ANTIBACTERIAL ACTIVITY OF TARO LEAVES EXTRACTCOMBINED WITH ZnO AND ORGANO-ZnO AGAINST Staphylococcus aureus
DOI:
https://doi.org/10.51771/fj.v5i1.1197Keywords:
Taro leaves, ZnO, Organo-ZnO, Antibacterial, Staphylococcus aureusAbstract
Staphylococcus aureus is a pathogenic bacterium commonly associated with serious human infections, leading to various health complications. Zinc oxide (ZnO) is well known for its antibacterial properties, while Organo-ZnO, a modified form of ZnO incorporating organic compounds, exhibits even stronger antibacterial potential. Due to their therapeutic properties, Taro leaves (Colocasia esculenta L.) have a long history of traditional use for treating various ailments, including burns and boils. This study aims to identify the active compounds in taro leaves that function as antibacterial agents and to evaluate the combined antibacterial activity of taro leaf extract with ZnO and Organo-ZnO against Staphylococcus aureus. The research was conducted as a laboratory experiment. Phytochemical screening revealed that the taro leaf extract contains alkaloids, flavonoids, tannins, and saponins, which may contribute to its antibacterial effects. Antibacterial activity tests against Staphylococcus aureus showed inhibition zones of 8.5 mm for taro leaf extract, 8.8 mm for 5% ZnO, and 10 mm for 5% Organo-ZnO. The combination of taro leaf extract with 5% ZnO resulted in an inhibition zone of 9.1 mm, while the combination with 5% Organo-ZnO exhibited the highest inhibition zone of 10.7 mm. These results suggest that the ethanol extract of taro leaves possesses significant antibacterial activity against Staphylococcus aureus, and its effectiveness is further enhanced when combined with ZnO and Organo-ZnO. The combination with Organo-ZnO demonstrates the greatest antibacterial potential, indicating its promise for further development in antibacterial applications.
References
Alzabt, A. M., & Rukayadi, Y. (2021). Antibacterial activity of taro [Colocasia esculenta (L.) Schott] leaves extract against foodborne pathogens and its effect on microbial population in raw chicken meat. Food Research (Malaysia). https://doi.org/10.26656/fr.2017.5(2).523
Ariefta, N. R., Sofian, F. F., Aboshi, T., Kuncoro, H., Dinata, D. I., Shiono, Y., & Nishikawa, Y. (2024). Evaluation of the antiplasmodial and anti-Toxoplasma activities of several Indonesian medicinal plant extracts. Journal of Ethnopharmacology, 331, 118269. https://doi.org/10.1016/j.jep.2024.118269
Baro, M. R., Das, M., Kalita, A., Das, B., & Sarma, K. (2023). Exploring the anti-inflammatory potential of Colocasia esculenta root extract in in-vitro and in-vivo models of inflammation. Journal of Ethnopharmacology, 303, 116021. https://doi.org/10.1016/j.jep.2022.116021
Barus, E. J. K., Herlina, A. H. R., & Herlina, H. (2024). Uji Aktivitas Antiinflamasi Ekstrak Etanol Daun Sikkam (Bischofia javanica Blume) dan Precipitated Calcium Carbonate (PCC) terhadap Mencit (Mus musculus). Jurnal Dunia Farmasi, 8(3), 192–207. https://doi.org/10.33085/jdf.v8i3.6125
Beato, Z., Gitonga, L. N., Amonsou, E. O., & Reddy, V. (2024). Nutritional evaluation of Colocasia esculenta (L.) Schott leaves and corms from KwaZulu-Natal, South Africa. Journal of Food Composition and Analysis, 126, 105831. https://doi.org/10.1016/j.jfca.2023.105831
Cahyaningsih, R., Magos Brehm, J., & Maxted, N. (2021). Gap analysis of Indonesian priority medicinal plant species as part of their conservation planning. Global Ecology and Conservation, 26, e01459. https://doi.org/10.1016/j.gecco.2021.e01459
Costenaro, D., Carniato, F., Gatti, G., Marchese, L., & Bisio, C. (2014). Organo-modified ZnO nanoparticles: tuning of the optical properties for PLED device fabrication. New Journal of Chemistry, 38(12), 6205–6211. https://doi.org/10.1039/C4NJ01331J
Fobi Donkor, E., Nyadanu, D., Akromah, R., & Osei, K. (2023). Genotype by Phytophthora colocasiae isolate interaction in breeding for resistance to taro [Colocasia esculenta var esculenta (L.) Schott] leaf blight disease in Ghana. Heliyon, 9(6), e16350. https://doi.org/10.1016/j.heliyon.2023.e16350
Ginting, O. S. B. (2021). Perbandingan Aktivitas Antibakteri Ekstrak Etanol Biji Pepaya (Carica papaya L.) Terhadap Bakteri Escherichia coli dan Staphylococcus aureus. Forte Journal, 1(1), 19–25. https://doi.org/10.51771/fj.v1i1.36
Harefa, K., Aritonang, B., & Ritonga, A. H. (2022). Aktivitas Antibakteri Ekstrak Etanol Kulit Markisa Ungu (Passiflora Edulis Sims) Terhadap Bakteri Propionibacterium Acnes. Jurnal Multidisiplin Madani, 2(6), 2743–2758. https://doi.org/10.55927/mudima.v2i6.469
Ma, J., An, W., Xu, Q., Fan, Q., & Wang, Y. (2019). Antibacterial casein-based ZnO nanocomposite coatings with improved water resistance crafted via double in situ route. Progress in Organic Coatings, 134, 40–47. https://doi.org/10.1016/j.porgcoat.2019.05.007
Mallick, S., Nag, M., Bhattacharya, D., Tandi, A., Chakraborty, B., Rao, A., … Ray, R. R. (2024). Green-synthesized ZnO nanorods as potential deefeblement agent of Pseudomonas aeruginosa and Staphylococcus aureus biofilm. Biocatalysis and Agricultural Biotechnology, 57, 103091. https://doi.org/10.1016/j.bcab.2024.103091
Mariño, F., López, E. R., Arnosa, Á., González Gómez, M. A., Piñeiro, Y., Rivas, J., … Fernández, J. (2022). ZnO nanoparticles coated with oleic acid as additives for a polyalphaolefin lubricant. Journal of Molecular Liquids, 348, 118401. https://doi.org/10.1016/j.molliq.2021.118401
Mitharwal, S., Kumar, A., Chauhan, K., & Taneja, N. K. (2022). Nutritional, phytochemical composition and potential health benefits of taro (Colocasia esculenta L.) leaves: A review. Food Chemistry, 383, 132406. https://doi.org/10.1016/j.foodchem.2022.132406
Oriyomi, V. O., Fagbohun, O. F., Oyedeji, T. T., & Agboola, F. K. (2022). Biotoxicity of Colocasia esculenta [Linn.]: Involvement of Colocasia esculenta leaf in preservation of staple from Sitophilus zeamais [Motschulsky] attack. Industrial Crops and Products, 182, 114897. https://doi.org/10.1016/j.indcrop.2022.114897
Priyanka, S., S. Karthick Raja Namasivayam, John F. Kennedy, & Meivelu Moovendhan. (2024). Starch-chitosan-Taro mucilage nanocomposite active food packaging film doped with zinc oxide nanoparticles – Fabrication, mechanical properties, anti-bacterial activity and eco toxicity assessment. International Journal of Biological Macromolecules, 277, 134319. https://doi.org/10.1016/j.ijbiomac.2024.134319
Putriani, K., & Sugara, B. (2024). Aktivitas Antibakteri Ekstrak Daun Ketapang (Terminalia catappa L.) Terhadap Staphylococcus aureus. Innovative: Journal of Social Science Research, 4(1), 4178–4187. https://doi.org/10.31004/innovative.v4i1.7581
Rahmanimehr, E., Baghshahi, S., & Karami, F. (2024). A Comparative Study on Antibacterial Properties of EuO, CuO, and ZnO Dopped ZrO2 Sol-Gel Coatings. Ceramics International. https://doi.org/10.1016/j.ceramint.2024.07.364
Ritonga, A. H., Aritonang, B., Putri, G. E., Khairiah, K., Siahaan, E. W. B., & Meilani, D. (2023). PLA/LLDPE/Organo-Precipitated Calcium Carbonate Composites Containing LLDPE-g-OA Compatibilizers: Mechanical, Physical, Thermal, and Morphology. Indonesian Journal of Chemistry, 23(6), 1694–1703. https://doi.org/10.22146/ijc.86983
Ritonga, A. H., Jamarun, N., Arief, S., Aziz, H., Tanjung, D. A., Isfa, B., … Faisal, H. (2022). Organic modification of precipitated calcium carbonate nanoparticles as filler in LLDPE/CNR blends with the presence of coupling agents: impact strength, thermal, and morphology. Journal of Materials Research and Technology, 17, 2326–2332. https://doi.org/10.1016/j.jmrt.2022.01.125
Sabry, R. S., & Fahad, N. K. (2019). Oleic acid-modified superhydrophobic ZnO nanostructures via double hydrothermal method. Journal of Adhesion Science and Technology, 33(14), 1558–1571. https://doi.org/10.1080/01694243.2019.1603180
Shelke, M. B., Kanawade, S. N., & Laware, R. B. (2024). Antibacterial Activity of the Leaves of Colocasia esculenta Linn. https://doi.org/10.52711/2231-5659.2024.00016
Sijabat, U. A., Ritonga, A. H., & Harahap, H. Y. (2024). Uji Aktivitas Antiinflamasi Ekstrak Etanol Daun Gedi (Abelmoschus manihot L.) Terhadap Mencit Putih Jantan (Mus musculus). Forte Journal, 4(2), 345–353. https://doi.org/10.51771/fj.v4i2.913
Suparto, I. H., & Kurniawan, E. (2019). Synthesis and Characterization of Hydroxyapatite-Zinc Oxide (HAp-ZnO) as Antibacterial Biomaterial. IOP Conference Series: Materials Science and Engineering, 599(1), 12011. IOP Publishing. https://doi.org/10.1088/1757-899X/599/1/012011
Verma, N., Pathak, D., & Thakur, N. (2024). Eco-friendly green synthesis of (Cu, Ce) dual-doped ZnO nanoparticles with Colocasia esculenta plant extract using microwave assisted technique for antioxidant and antibacterial activity. Next Materials, 5, 100271. https://doi.org/10.1016/j.nxmate.2024.100271.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ahmad Hafizullah Ritonga, Imel Santika, Hasni Yaturramadhan Harahap, Barita Aritonang

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.