ANTIOXIDANT AND ANTIMICROBIAL ACTIVITIES OF LEAVES OF MEDICINAL PLANT Hibiscus tiliaceus L.

Authors

  • Nilsya Febrika Zebua Program Studi Farmasi, Fakultas Farmasi, Universitas Tjut Nyak Dhien, Medan, Indonesia
  • Nerdy Nerdy Program Studi Farmasi, Fakultas Farmasi, Universitas Tjut Nyak Dhien, Medan, Indonesia
  • Refi Bahrianur Program Studi Farmasi, Fakultas Farmasi, Universitas Tjut Nyak Dhien, Medan, Indonesia
  • Shadiq Suwailim Program Studi Farmasi, Fakultas Farmasi, Universitas Tjut Nyak Dhien, Medan, Indonesia
  • Said Haikal Alfajar Program Studi Farmasi, Fakultas Farmasi, Universitas Tjut Nyak Dhien, Medan, Indonesia

DOI:

https://doi.org/10.51771/fj.v4i2.902

Keywords:

Anti mikroba;, Antioksidan;, Hibiscus tiliaceus L

Abstract

Antimicrobial agents are very important in the medical world. The agent is used as a surgical and intensive care procedure. However, bacteria have become resistant to the antibiotics used. Apart from that, antioxidants are also needed in the medical world as neuroprotectives and preventing free radicals in the body so as to avoid degenerative diseases. Hibiscus tiliaceus L or better known in Indonesia is a waru plant, containing various active compounds such as alkaloids, flavonoids, tannins and saponins that can be used as alternatives as natural antimicrobials and antioxidants. The purpose of writing this review article is to determine the antimicrobial and antioxidant potential of hibiscus plants (Hibiscus tiliaceus L.). The method used in this review article is a literature study obtained from sciencedirect, researchgate and google scholar regarding the benefits of Hibiscus tiliaceus L. leaf extract as an antimicrobial and antioxidant through a literature search process using research articles from the last 10 years. Based on research that has been carried out, it shows that Hibiscus tiliaceus L. leaves extract has the potential to be a natural antimicrobial and antioxidant.

References

Abdul-Awal, S. M., Nazmir, S., Nasrin, S., Nurunnabi, T. R., & Uddin, S. J. (2016). Evaluation of pharmacological activity of Hibiscus tiliaceus. SpringerPlus, 5(1). https://doi.org/10.1186/s40064-016-2891-0

Adetuyi, B. O., Adebayo, P. F., Olajide, P. A., Atanda, O. O., & Oloke, J. K. (2022). Involvement Of Free Radicals In The Ageing Of Cutaneous Membrane. World News of Natural Sciences, 43(April), 11–37.

Ahmad, N., Joji, R. M., & Shahid, M. (2023). Evolution and implementation of One Health to control the dissemination of antibiotic-resistant bacteria and resistance genes: A review. Frontiers in Cellular and Infection Microbiology, 12, 1–30. https://doi.org/10.3389/fcimb.2022.1065796

Andriani, Y., Mohamad, H., Bhubalan, K., Abdullah, M. I., & Amir, H. (2017). Phytochemical analyses, anti-bacterial and anti-biofilm activities of mangrove-associated Hibiscus tiliaceus extracts and fractions against Pseudomonas aeruginosa. Journal of Sustainability Science and Management, 12(2), 45–51.

Andriani, Y., Ramli, N. M., Syamsumir, D. F., Kassim, M. N. I., Jaafar, J., Aziz, N. A., Marlina, L., Musa, N. S., & Mohamad, H. (2019). Phytochemical analysis, antioxidant, antibacterial and cytotoxicity properties of keys and cores part of Pandanus tectorius fruits. Arabian Journal of Chemistry, 12(8), 3555–3564. https://doi.org/10.1016/j.arabjc.2015.11.003

Andriani, Y., Sababathy, M., Amir, H., Sarjono, P. R., Syamsumir, D. F., Sugiwati, S., & Kassim, M. N. I. (2020). The potency of Hibiscus tiliaceus leaves as antioxidant and anticancer agents via induction of apoptosis against MCF-7 cells. IOP Conference Series: Materials Science and Engineering, 959(1). https://doi.org/10.1088/1757-899X/959/1/012022

Artanti, A. N., Rahmadanny, N., & Prihapsara, F. (2018). Radical Scavenging Activity from Ethanolic Extract of Malvaceae Family’s Flowers. IOP Conference Series: Materials Science and Engineering, 349(1). https://doi.org/10.1088/1757-899X/349/1/012006

Bakr, R. O., Amer, R. I., Attia, D., Abdelhafez, M. M., Al-Mokaddem, A. K., El Gendy, A. N., El-Fishawy, A. M., Fayed, M. A. A., & Gad, S. S. (2021). In-vivo wound healing activity of a novel composite sponge loaded with mucilage and lipoidal matter of Hibiscus species. Biomedicine and Pharmacotherapy, 135(February), 111225. https://doi.org/10.1016/j.biopha.2021.111225

Bal-Demirci, T., Güveli, Ş., Yeşilyurt, S., Özdemir, N., & Ülküseven, B. (2020). Thiosemicarbazone ligand, nickel(II) and ruthenium(II) complexes based on vitamin B6 vitamer: The synthesis, different coordination behaviors and antioxidant activities. Inorganica Chimica Acta, 502(Ii), 119335. https://doi.org/10.1016/j.ica.2019.119335

Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P., & Chang, C. M. (2022). Determination of Antioxidants by DPPH Radical Scavenging Activity and Quantitative Phytochemical Analysis of Ficus religiosa. Molecules, 27(4). https://doi.org/10.3390/molecules27041326

Bata, M., & Rahayu, S. (2017). Evaluation of Bioactive Substances in Hibiscus tiliaceus and its Potential as a Ruminant Feed Additive. Current Bioactive Compounds, 13, 157–164.

Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42–51. https://doi.org/10.1038/nrmicro3380

Cahyaningrum, P. L., Yuliari, S. A. M., Putra, C., & Suta, I. B. P. (2020). Antioxidant activity of loloh Malaka fruit (Phyllanthus emblica L.) in Ayurveda Medication: How it supports environmental conservation. Journal of Physics: Conference Series, 1469, 1–8. https://doi.org/10.1088/1742-6596/1469/1/012115

Chanu, N. R., Gogoi, P., Barbhuiya, P. A., Dutta, P. P., Pathak, M. P., & Sen, S. (2023). Natural Flavonoids as Potential Therapeutics in the Management of Diabetic Wound: A Review. Current Topics in Medicinal Chemistry, 23(8), 690–710. https://doi.org/10.2174/1568026623666230419102140

Chen, D.-L., Ma, G.-X., Yang, E.-L., Yang, Y., Wang, C.-H., Sun, Z.-C., Liang, H.-Q., Xu, X.-D., & Wei, J.-H. (2022). Cadinane-type sesquiterpenoid dimeric diastereomers hibisceusones A-C from infected stems of Hibiscus tiliaceus with cytotoxic activity against triple-negative breast cancer cells. Bioorganic Chemistry, 127. https://doi.org/10.1016/j.bioorg.2022.105982

Doley, K., & Borde, M. (2020). Microbial Technology for Health and Environment (P. K. Arora (ed.); Vol. 22, Issue March). Springer Singapore. https://doi.org/10.1007/978-981-15-2679-4

Dorsey, B. M., & Jones, M. A. (2017). Healthy components of coffee processing by-products. In Handbook of Coffee Processing By-Products (Vol. 711, Issue 1, pp. 27–62). Elsevier. https://doi.org/10.1016/B978-0-12-811290-8.00002-5

Echegaray, N., Pateiro, M., Munekata, P. E. S., Lorenzo, J. M., Chabani, Z., Farag, M. A., & Domínguez, R. (2021). Measurement of antioxidant capacity of meat and meat products: Methods and applications. Molecules, 26(13). https://doi.org/10.3390/molecules26133880

Efthymiopoulos, I., Hellier, P., Ladommatos, N., Russo-Profili, A., Eveleigh, A., Aliev, A., Kay, A., & Mills-Lamptey, B. (2018). Influence of solvent selection and extraction temperature on yield and composition of lipids extracted from spent coffee grounds. Industrial Crops and Products, 119(September 2017), 49–56. https://doi.org/10.1016/j.indcrop.2018.04.008

Fried, R. (2014). The Polyphenolic Antioxidant Resveratrol, the Carotinoid Lycopene, and the Proanthocyanidin Pycnogenol. In Erectile Dysfunction As a Cardiovascular Impairment (pp. 259–291). Elsevier. https://doi.org/10.1016/B978-0-12-420046-3.00009-3

García-Heredia, A. (2023). Plasma Membrane-Cell Wall Feedback in Bacteria. Journal of Bacteriology, 205(3), 1–12. https://doi.org/10.1128/jb.00433-22

Hossain, H., Akbar, P., Rahman, S., Yeasmin, S., Khan, T., Rahman, M., & Jahan, I. (2015). HPLC Profiling and Antioxidant Properties of the Ethanol Extract of Hibiscus tiliaceus Leaf Available in Bangladesh. European Journal of Medicinal Plants, 7(1), 7–15. https://doi.org/10.9734/ejmp/2015/14720

Iskandar, A. F. A., Santoso, U., & Supriyadi, S. (2023). Chemical Characteristics of Waru Leaf (Hibiscus tiliaceus) As Food Packaging Material. Indonesian Food and Nutrition Progress, 20(2), 72. https://doi.org/10.22146/ifnp.76137

Jeffery, T. D., & Richardson, M. L. (2021). A review of the effectiveness of hibiscus for treatment of metabolic syndrome. Journal of Ethnopharmacology, 270(6), 113762. https://doi.org/10.1016/j.jep.2020.113762

Khalid, M., Amayreh, M., Sanduka, S., Salah, Z., Al-Rimawi, F., Al-Mazaideh, G. M., Alanezi, A. A., Wedian, F., Alasmari, F., & Faris Shalayel, M. H. (2022). Assessment of antioxidant, antimicrobial, and anticancer activities of Sisymbrium officinale plant extract. Heliyon, 8(9), e10477. https://doi.org/10.1016/j.heliyon.2022.e10477

Konan, K. V., Le Tien, C., & Mateescu, M. A. (2016). Electrolysis-induced fast activation of the ABTS reagent for an antioxidant capacity assay. Analytical Methods, 8(28), 5638–5644. https://doi.org/10.1039/C6AY01088A

Kut, K., Cieniek, B., Stefaniuk, I., Bartosz, G., & Sadowska-Bartosz, I. (2022). A Modification of the ABTS• Decolorization Method and an Insight into Its Mechanism. Processes, 10(7). https://doi.org/10.3390/pr10071288

Le, D., Han, S., Ahn, J., Yu, J., Kim, C. K., & Lee, M. (2022). Analysis of Antioxidant Phytochemicals and Anti-Inflammatory Effect from Vitex rotundifolia L.f. Antioxidants, 11(3). https://doi.org/10.3390/antiox11030454

Li, J., & Sobańtka, A. (2023). A Systematic Analysis of the Effect of Extraction Solvents on the Chemical Composition of Extraction Solutions and the Analytical Implications in Extractables and Leachables Studies. Journal of Pharmaceutical and Biomedical Analysis, 222(4), 115081. https://doi.org/10.1016/j.jpba.2022.115081

Li, X., Zhang, J., Liu, G., Wu, G., Wang, R., & Zhang, J. (2024). High altitude hypoxia and oxidative stress: The new hope brought by free radical scavengers. Life Sciences, 336(1), 122319. https://doi.org/10.1016/j.lfs.2023.122319

Lim, W. Y., Chan, E. W. C., Phan, C. W., & Wong, C. W. (2022). Potent melanogenesis inhibition by friedelin isolated from Hibiscus tiliaceus leaves. European Journal of Integrative Medicine, 55(2), 102181. https://doi.org/10.1016/j.eujim.2022.102181

Losada-Barreiro, S., Sezgin-Bayindir, Z., Paiva-Martins, F., & Bravo-Díaz, C. (2022). Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines, 10(12). https://doi.org/10.3390/biomedicines10123051

Lu, W., Wei, G., Zhou, B., Liu, J., Zhang, S., & Guo, J. (2022). A comparative analysis of photosynthetic function and reactive oxygen species metabolism responses in two hibiscus cultivars under saline conditions. Plant Physiology and Biochemistry, 184(1), 87–97. https://doi.org/10.1016/j.plaphy.2022.05.023

Ma, E. Z., & Khachemoune, A. (2022). Flavonoids and their therapeutic applications in skin diseases. Archives of Dermatological Research, 315(3), 321–331. https://doi.org/10.1007/s00403-022-02395-3.

Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen, 2(2), 48–78. https://doi.org/10.3390/oxygen2020006.

Marti, E., Variatza, E., & Balcazar, J. L. (2014). The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends in Microbiology, 22(1), 36–41. https://doi.org/10.1016/j.tim.2013.11.001

Morzaeva, G. P., Nadirova, Y., Buvamukhamedova, N. T., & Mukhiddinova, F. M. (2023). EVALUATION OF THE EFFECTIVENESS OF ANTIOXIDANTS ON THE FUNCTIONAL STATE OF THE KIDNEYS IN PATIENTS WITH DIABETIC NEPHROPATHY. Horizon: Journal of Humanity and Artificial Intelligence, 2(6), 95–99.

Munteanu, I. G., & Apetrei, C. (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences, 22(7). https://doi.org/10.3390/ijms22073380

Njoya, M. E. (2021). Medicinal plants, antioxidant potential, and cancer. In Cancer (Vol. 1321, Issue 3, pp. 349–357). Elsevier. https://doi.org/10.1016/B978-0-12-819547-5.00031-6.

Ozdemir, M., Gungor, V., Melikoglu, M., & Aydiner, C. (2024). Solvent selection and effect of extraction conditions on ultrasound-assisted extraction of phenolic compounds from galangal (Alpinia officinarum). Journal of Applied Research on Medicinal and Aromatic Plants, 38(1), 100525. https://doi.org/10.1016/j.jarmap.2023.100525.

Pagarra, H., Rahman, R. A., Hartati, Rachmawaty, Hala, Y., & Esivan, S. M. M. (2022). Phytochemical Screening, Antimicrobial and Antioxidant Activity From Sonneratia Caseolaris Leaves Extract. Jurnal Teknologi, 84(5), 59–66. https://doi.org/10.11113/jurnalteknologi.v84.17647.

Rahman, S. (2022). Research Trends in Food Technology and Nutrition. Research Trends in Food Technology and Nutrition, February. https://doi.org/10.22271/ed.book.1934.

Ramírez-Coronel, A. A., Mohammadi, M. J., Majdi, H. S., Zabibah, R. S., Taherian, M., Prasetio, D. B., Gabr, G. A., Asban, P., Kiani, A., & Sarkohaki, S. (2023). Hospital wastewater treatment methods and its impact on human health and environments. Reviews on Environmental Health, 7(4), 2863–2871. https://doi.org/10.1515/reveh-2022-0216.

Rani, R., Arora, S., Kaur, J., & Manhas, R. K. (2018). Phenolic Compounds As Antioxidants And Chemopreventive Drugs From Streptomyces Cellulosae Strain TES17 Isolated From Rhizosphere Of Camellia Sinensis. BMC Complementary and Alternative Medicine, 18(1), 1–15. https://doi.org/10.1186/s12906-018-2154-4.

Ratnavati, C. V., Patil, J. V., & Chavan, U. D. (2016). Sorghum Biochemistry An Industrial Perspective. In Academic Press ELSEVIER UK. Elsevier. https://doi.org/10.1016/C2014-0-03569-1

Rizzo, R., Petelinšek, N., Bonato, A., & Zenobi-Wong, M. (2023). From Free-Radical to Radical-Free: A Paradigm Shift in Light-Mediated Biofabrication. Advanced Science, 10(8), 1–12. https://doi.org/10.1002/advs.202205302.

Rubio, C. P., Hernández-Ruiz, J., Martinez-Subiela, S., Tvarijonaviciute, A., & Ceron, J. J. (2016). Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: An update. BMC Veterinary Research, 12(1), 1–8. https://doi.org/10.1186/s12917-016-0792-7

Rumpf, J., Burger, R., & Schulze, M. (2023). Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. International Journal of Biological Macromolecules, 233(February), 123470. https://doi.org/10.1016/j.ijbiomac.2023.123470

Sadeer, N. B., Montesano, D., Albrizio, S., Zengin, G., & Mahomoodally, M. F. (2020). The versatility of antioxidant assays in food science and safety—chemistry, applications, strengths, and limitations. Antioxidants, 9(8), 1–39. https://doi.org/10.3390/antiox9080709

Salem, M. Z. M., Olivare-Perez, J., & Salem, A. Z. M. (2014). Studies on biological activities and phytochemicals composition of Hibiscus species- A review. Life Science Journal 2014, 11(5), 1–8.

Samsudin, M. S., Andriani, Y., Sarjono, P. R., & Syamsumir, D. F. (2019). STUDY ON Hibiscus tiliaceus LEAVES AS ANTIBACTERIAL AND ANTIOXIDANT AGENTS. Alotrop, 3(2). https://doi.org/10.33369/atp.v3i2.9874

Suhartono, S., Fitri, L., Nurhaliza, N., Ismail, Y. S., Nursanty, R., Mahyuddin, M., & Jannah, M. (2019). Ethanolic leaf extracts of Waru (Hibiscus tiliaceus) inhibit biofilm formation of Vibrio alginolyticus in vitro. Journal of Physics: Conference Series, 1321(3). https://doi.org/10.1088/1742-6596/1321/3/032045

Suktham, T., Soliven, A., Jones, A., Dennis, G. R., & Shalliker, R. A. (2020). Information rich chromatographic separations of natural samples: The analysis of antioxidants in coffee using post column derivatisation and the CUPRAC assay on narrow bore reaction flow HPLC columns. Microchemical Journal, 153, 104403. https://doi.org/10.1016/j.microc.2019.104403

Sulaiman, I. S. C., Basri, M., Fard Masoumi, H. R., Chee, W. J., Ashari, S. E., & Ismail, M. (2017). Effects of temperature, time, and solvent ratio on the extraction of phenolic compounds and the anti-radical activity of Clinacanthus nutans Lindau leaves by response surface methodology. Chemistry Central Journal, 11(1), 1–12. https://doi.org/10.1186/s13065-017-0285-1

Sumardi, Basyuni, M., & Wati, R. (2018). Antimicrobial activity of polyisoprenoids of sixteen mangrove species from North Sumatra, Indonesia. Biodiversitas, 19(4), 1243–1248. https://doi.org/10.13057/biodiv/d190409.

Taghvaei, M., & Jafari, S. M. (2015). Application and stability of natural antioxidants in edible oils in order to substitute synthetic additives. Journal of Food Science and Technology, 52(3), 1272–1282. https://doi.org/10.1007/s13197-013-1080-1.

Taupik, M., & Mustapa, M. A. (2019). IDENTIFIKASI ISOLAT KULIT BATANG WARU (Hibiscus tiliaceus L.) MENGGUNAKAN SPEKTROSKOPI INFRAMERAH. Journal Syifa Sciences and Clinical Research, 1(1), 14–20. https://doi.org/10.37311/jsscr.v1i1.2199.

Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R. M., Mitra, S., Emran, T. Bin, Dhama, K., Ripon, M. K. H., Gajdács, M., Sahibzada, M. U. K., Hossain, M. J., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14(12), 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020.

V, K., & Sampath, T. (2020). Microorganisms- Essential for the Human Life. Indian Journal of Research, 9(12), 1–2. https://www.researchgate.net/publication/346707883_Microorganisms-_Essential_for_the_Human_Life.

Xiao, F., Xu, T., Lu, B., & Liu, R. (2020). Guidelines for antioxidant assays for food components. Food Frontiers, 1(1), 60–69. https://doi.org/10.1002/fft2.10.

Xu, J., Zou, J., Wu, J., Zeng, H., Huang, Y., Yang, J., Gong, C., Chen, S., & Ma, J. (2024). Enhanced chlorination of diclofenac using ABTS as electron shuttle: Performance, mechanism and applicability. Science of The Total Environment, 907(September), 168117. https://doi.org/10.1016/j.scitotenv.2023.168117.

Yang, H., Yu, X., Liu, J., Tao, Y., & Nong, G. (2023). Investigation of the structure of gallate xylose polymers and their antioxidant properties for skin care products. Carbohydrate Research, 523(2), 108728. https://doi.org/10.1016/j.carres.2022.108728.

Zhang, Y., Shang, C., Sun, C., & Wang, L. (2024). Simultaneously regulating absorption capacities and antioxidant activities of four stilbene derivatives utilizing substitution effect: A theoretical and experimental study against UVB radiation. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 304(1), 123325. https://doi.org/10.1016/j.saa.2023.123325.

Downloads

Published

2024-07-31