REVIEW ARTIKEL PENGGUNAAN POLIMER UNTUK FORMULASI NANOPARTIKEL METFORMIN

Authors

  • Viviane Annisa Universitas Islam Indonesia, Yogyakarta, Indonesia

DOI:

https://doi.org/10.51771/fj.v4i2.929

Keywords:

Metformin, nanopartikel, polimer alami, formulasi, diabetes melitus

Abstract

Metformin merupakan obat pilihan pertama terapi DM tipe 2 atau NIDDM (Non-Insulin Dependent Diabetes Mellitus) dan paling banyak diresepkan. Metformin memiliki sifat sangat hidrofilik dan permeabilitas yang buruk sehingga dikategorikan ke dalam Biopharmaceutics Classification System (BCS) kelas 3. Nanoteknologi merupakan teknologi formulasi sediaan farmasi dan sistem penghantaran obat yang memiliki banyak keunggulan. Urgensi penelitian ini adalah pentingnya suatu review yang membahas penggunaan polimer untuk formulasi nanopartikel metformin untuk memberikan informasi dan pengetahuan sebagai acuan penelitian bagi peneliti yang ingin meneliti tentang formulasi metformin. Pada studi ini, dilakukan review artikel tentang formulasi nanopartikel metformin yang menggunakan polimer alami sebagai matriks. Database yang digunakan adalah Scopus dan PubMed. Tipe data dari database adalah jurnal penelitian tanpa ada pembatasan tahun. Referensi yang diperoleh dari database kemudian dilakukan identifikasi, analisis, dan dipilih sesuai dengan topik yang akan dikaji. Formulasi metformin dalam bentuk sediaan nanopartikel menggunakan polimer alami dapat memodifikasi metformin menjadi sediaan dengan pelepasan terkontrol, meningkatkan efikasi pengobatan menjadi lebih baik dan mengurangi frekuensi pemberian obat. Nanoenkapsulasi obat merupakan cara yang efektif untuk menurunkan efek samping obat yang diikuti dengan pelepasan terkontrol dan penghantaran obat pada lokasi spesifik. Polimer biasanya direkomendasikan sebagai pilihan terbaik untuk matriks obat karena sifatnya yang biodegradable dan biokompatibel. Polimer yang banyak digunakan sebagai matriks nanoenkapsulasi metformin adalah alginat dan kitosan. Nanopartikel polimerik efektif pada dosis rendah yang diikuti dengan pelepasan terkontrol sehingga menurunkan efek samping yang disebabkan oleh dosis tinggi. Enkapsulasi metformin ke dalam nanopartikel polimerik dapat memodifikasi pelepasan metformin menjadi sustained release dan efikasi yang lebih tinggi pada dosis rendah.

References

Acebedo-Martínez, F. J., Domínguez-Martín, A., Alarcón-Payer, C., Garcés-Bastida, C., Verdugo-Escamilla, C., Gómez-Morales, J., & Choquesillo-Lazarte, D. (2023). Metformin-NSAIDs Molecular Salts: A Path towards Enhanced Oral Bioavailability and Stability. Pharmaceutics, 15(2), 449. https://doi.org/10.3390/pharmaceutics15020449

Ahmed, T. A., & Aljaeid, B. M. (2017). A potential in situ gel formulation loaded with novel fabricated poly(Lactide-co-glycolide) nanoparticles for enhancing and sustaining the ophthalmic delivery of ketoconazole. International Journal of Nanomedicine, 12, 1863–1875. https://doi.org/10.2147/IJN.S131850

Annisa, V., Choiri, S., Nanda, T., Sulaiman, S., & Nugroho, A. E. (2021). Polymer as precipitation inhibitor of weak base drug: An update and brief review. Thai Journal of Pharmaceutical Sciences, 45(5), 326–332.

Annisa, V., Sulaiman, T. N. S., Nugroho, A. K., & Nugroho, A. E. (2021). Review Sinergisitas Kombinasi Polimer Alami Serta Pemanfaatan dalam Formulasi Obat. Majalah Farmasetika, 6(5), 436. https://doi.org/10.24198/mfarmasetika.v6i5.35935

Arole, V. M., & Munde, S. V. (2014). Fabrication of Nanomaterials Top-Down and Bottom-Up Approaches - An Overview. JAAST:Material Science (Special Issue, 1(2), 2–89. https://pdfs.semanticscholar.org/34f8/921434fb256c9c8cca886722b5c920a1e4d2.pdf

Banday, M. Z., Sameer, A. S., & Nissar, S. (2020). Pathophysiology of diabetes: An overview. Avicenna Journal of Medicine, 10(04), 174–188. https://doi.org/10.4103/ajm.ajm_53_20

Carvalho, P. M., Felício, M. R., Santos, N. C., Gonçalves, S., & Domingues, M. M. (2018). Application of Light Scattering Techniques to Nanoparticle Characterization and Development. Frontiers in Chemistry, 6. https://doi.org/10.3389/fchem.2018.00237

Cetin, M., & Sahin, S. (2016). Microparticulate and Nanoparticulate Drug Delivery Systems for Metformin Hydrochloride. Drug Delivery, 23(8), 2796–2805. https://doi.org/10.3109/10717544.2015.1089957

Chinnaiyan, S. K., Deivasigamani, K., & Gadela, V. R. (2019). Combined synergetic potential of metformin loaded pectin-chitosan biohybrids nanoparticle for NIDDM. International Journal of Biological Macromolecules, 125, 278–289. https://doi.org/10.1016/j.ijbiomac.2018.12.009

Chinnaiyan, S. K., Karthikeyan, D., & Gadela, V. R. (2018). Development and Characterization of Metformin Loaded Pectin Nanoparticles for T2 Diabetes Mellitus. Pharmaceutical Nanotechnology, 6(4), 253–263. https://doi.org/10.2174/2211738507666181221142406

da Trindade, M. T., Kogawa, A. C., & Salgado, H. R. N. (2018). Metformin: A Review of Characteristics, Properties, Analytical Methods and Impact in the Green Chemistry. Critical Reviews in Analytical Chemistry, 48(1), 66–72. https://doi.org/10.1080/10408347.2017.1374165

Elgadir, M. A., Uddin, M. S., Ferdosh, S., Adam, A., Chowdhury, A. J. K., & Sarker, M. Z. I. (2015). Impact of Chitosan Composites and Chitosan Nanoparticle Composites on Various Drug Delivery Systems: A Review. Journal of Food and Drug Analysis, 23(4), 619–629. https://doi.org/10.1016/j.jfda.2014.10.008

Fahmy, U. A., Aldawsari, H., Ahmed, O. A. A., Abdulaziz, K., Pharmacy, I., & Pharmacy, I. (2018). Polymeric Nanoparticulate Formulation To Improve Bioavailability of Metformin in Rats. 13(4), 1223–1229.

Foretz, M., Guigas, B., Bertrand, L., Pollak, M., & Viollet, B. (2014). Metformin: From Mechanisms of Action to Therapies. Cell Metabolism, 20(6), 953–966. https://doi.org/10.1016/j.cmet.2014.09.018

Garg, U., Chauhan, S., Nagich, U., & Jain, N. (2019). Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting. Advanced Pharmaceutical Bulletin, 9(2), 195–204.

Gunasekaran, T., Haile, T., Nigusse, T., & Dhanaraju, M. D. (2014). Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pacific Journal of Tropical Biomedicine, 4, S1–S7. https://doi.org/10.12980/APJTB.4.2014C980

Haleem, A., Javaid, M., Singh, R. P., Rab, S., & Suman, R. (2023). Applications of nanotechnology in medical field: a brief review. Global Health Journal, 7(2), 70–77. https://doi.org/10.1016/j.glohj.2023.02.008

Honary, S., & Zahir, F. (2013). Effect of Zeta Potential on the Properties of Nano-Drug Delivery Systems - A Review (Part 1). Tropical Journal of Pharmaceutical Research, 12(2). https://doi.org/10.4314/tjpr.v12i2.19

Iurciuc-Tincu, C. E., Atanase, L. I., Ochiuz, L., Jérôme, C., Sol, V., Martin, P., & Popa, M. (2020). Curcumin-loaded polysaccharides-based complex particles obtained by polyelectrolyte complexation and ionic gelation. I-Particles obtaining and characterization. International Journal of Biological Macromolecules, 147, 629–642. https://doi.org/10.1016/j.ijbiomac.2019.12.247

Kemenkes RI. (2014). Pedoman Pelayanan Kefarmasian pada Diabetes Melitus. Bina Kefarmasian dan Alat Kesehatan.

Kemenkes RI. (2020). Pedoman Nasional Pelayanan Kedokteran (PNPK) Tata Laksana Diabetes Melitus Tipe 2 Dewasa.

Khan, W., Abtew, E., Modani, S., & Domb, A. J. (2018). Polysaccharide Based Nanoparticles. Israel Journal of Chemistry, 58(12), 1315–1329. https://doi.org/10.1002/ijch.201800051

Koudelka, K. J., Pitek, A. S., Manchester, M., & Steinmetz, N. F. (2015). Virus-Based Nanoparticles as Versatile Nanomachines. Annual Review of Virology, 2(1), 379–401. https://doi.org/10.1146/annurev-virology-100114-055141

Kumar, C. S., Karthikeyan, D., & Gadela, V. R. (2017). Enhanced Effects of Metformin Loaded Chitoson Nanoparticles in L6 Myotubes: In vitro. Dm, 48–63. http://scholarsresearchlibrary.com/archive.html]

Kumar, S., Bhanjana, G., Verma, R. K., Dhingra, D., Dilbaghi, N., & Kim, K. H. (2017). Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. Journal of Pharmacy and Pharmacology, 69(2), 143–150.

Kwon, K., & Kim, J. C. (2016). Redox-responsive alginate microsphere containing cystamine. Journal of Biomaterials Science, Polymer Edition, 27(15), 1520–1533. https://doi.org/10.1080/09205063.2016.1215800

Lari, A. S., Zahedi, P., Ghourchian, H., & Khatibi, A. (2021). Microfluidic-based synthesized carboxymethyl chitosan nanoparticles containing metformin for diabetes therapy: In vitro and in vivo assessments. Carbohydrate Polymers, 261, 117889. https://doi.org/10.1016/j.carbpol.2021.117889

Maan, G. K., Bajpai, J., & Bajpai, A. K. (2016). Investigation of In Vitro Release of Cisplatin from Electrostatically Crosslinked Chitosan-Alginate Nanoparticles. Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry, 46(10), 1532–1540. https://doi.org/10.1080/15533174.2015.1137012

Mahalakshmi Devi, B., Latha, S., Umamaheshwari, D., Vijayalakshmi, K., Gomathi, T., & Sudha, P. N. (2014). Synthesis and characterisation of chitosan/sodium alginate/carboxymethyl cellulose beads. Der Pharmacia Lettre, 6(6), 389–395.

Malik, S., Muhammad, K., & Waheed, Y. (2023). Emerging Applications of Nanotechnology in Healthcare and Medicine. Molecules, 28(18), 6624. https://doi.org/10.3390/molecules28186624

Manivasagan, P., & Oh, J. (2016). Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. International Journal of Biological Macromolecules, 82, 315–327. https://doi.org/10.1016/j.ijbiomac.2015.10.081

Mohammed, M., Syeda, J., Wasan, K., & Wasan, E. (2017). An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics, 9(4), 53. https://doi.org/10.3390/pharmaceutics9040053

Mukherjee, S., Kaushik, S., Singh, P., Shweta, S., & Sahu, I. P. (2023). Transmission electron microscopy for biomedical nanotechnology. In Analytical Techniques for Biomedical Nanotechnology (pp. 12-1-12–19). IOP Publishing. https://doi.org/10.1088/978-0-7503-3379-5ch12

National Center for Biotechnology Information. (2024). Metformin. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/4091

Paques, J. P., Van Der Linden, E., Van Rijn, C. J. M., & Sagis, L. M. C. (2014). Preparation Methods of Alginate Nanoparticles. Advances in Colloid and Interface Science, 209, 163–171. https://doi.org/10.1016/j.cis.2014.03.009

Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. del P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H.-S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8

Penkov, D., Lukova, P., Manev, H., Dimitrova, S., & Kassarova, M. (2023). Polymer Tablet Matrix Systems for the Controlled Release of Dry Betula pendula Leaf Extract. Polymers, 15(17), 3558. https://doi.org/10.3390/polym15173558

Prabhakaran, S., Thirumal, D., Gimbun, J., & Ranganathan, B. (2017). Metformin - A Panacea Pharmaceutical Agent Through Convergence Revolution Initiative. Journal of Natural Remedies, 17(3), 69–79. https://doi.org/10.18311/jnr/2017/17938

Quiñones, J. P., Peniche, H., & Peniche, C. (2018). Chitosan Based Self-Assembled Nanoparticles in Drug Delivery. Polymers, 10(3), 1–32. https://doi.org/10.3390/polym10030235

Salatin, S., & Jelvehgari, M. (2017). Natural Polysaccharide Based Nanoparticles for Drug/Gene Delivery. Pharmaceutical Sciences, 23(2), 84–94. https://doi.org/10.15171/PS.2017.14

Shehata, T. M., & Ibrahima, M. M. (2019). BÜCHI nano spray dryer B-90: a promising technology for the production of metformin hydrochloride-loaded alginate–gelatin nanoparticles. Drug Development and Industrial Pharmacy, 45(12), 1907–1914. https://doi.org/10.1080/03639045.2019.1680992

Silbernagl, S., & Lang, F. (2016). Color Atlas of Pathophysiology (3rd ed.). Thieme Publishers Stuttgart.

Sim, S., & Wong, N. (2021). Nanotechnology and its use in imaging and drug delivery (Review). Biomedical Reports, 14(5), 42. https://doi.org/10.3892/br.2021.1418

Smith, J., Wood, E., & Dornish, M. (2004). Effect of Chitosan on Epithelial Cell Tight Junctions. Pharmaceutical Research, 21(1), 43–49. https://doi.org/10.1023/B:PHAM.0000012150.60180.e3

Srinivasan, S., Elumalai, K., Cherian, B. V., & Ramanujam, S. K. (2023). Formulation and characterization of metformin hydrochloride orodispersible tablets with super disintegrants. Intelligent Pharmacy, 1(3), 162–166. https://doi.org/10.1016/j.ipha.2023.06.006

Szekalska, M., Sosnowska, K., Zakrzeska, A., Kasacka, I., Lewandowska, A., & Winnicka, K. (2017). The Influence of Chitosan Cross-linking on the Properties of Alginate Microparticles with Metformin Hydrochloride—In Vitro and In Vivo Evaluation. Molecules, 22(1), 182. https://doi.org/10.3390/molecules22010182

Szekalska, M., & Winnicka, K. (2017). Evaluation of hard gelatin capsules with alginate microspheres containing model drugs with different water solubility. Acta Poloniae Pharmaceutica - Drug Research, 74(4), 1221–1230.

Tan, M. H., Alquraini, H., Mizokami-Stout, K., & MacEachern, M. (2016). Metformin: From Research to Clinical Practice. Endocrinology and Metabolism Clinics of North America, 45(4), 819–843. https://doi.org/10.1016/j.ecl.2016.06.008

Titus, D., James Jebaseelan Samuel, E., & Roopan, S. M. (2019). Nanoparticle characterization techniques. In Green Synthesis, Characterization and Applications of Nanoparticles (pp. 303–319). Elsevier. https://doi.org/10.1016/B978-0-08-102579-6.00012-5

Van Bavel, N., Issler, T., Pang, L., Anikovskiy, M., & Prenner, E. J. (2023). A Simple Method for Synthesis of Chitosan Nanoparticles with Ionic Gelation and Homogenization. Molecules, 28(11), 4328. https://doi.org/10.3390/molecules28114328

Venkatesan, J., Anil, S., Singh, S. K., & Kim, S. K. (2017). Preparations and Applications of Alginate Nanoparticles. In Seaweed Polysaccharides: Isolation, Biological and Biomedical Applications. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809816-5.00013-X

Vijayalakshmi, K., Gomathi, T., & Sudha, P. N. (2014). Preparation and characterization of nanochitosan/sodium alginate/microcrystalline cellulose beads. Der Pharmacia Lettre, 6(4), 65–77.

Wissam, Z., & Samer, H. (2019). Encapsulation of flaxseed oil extract in alginate–salep system by ionic gelation. Brazilian Journal of Pharmaceutical Sciences, 55. https://doi.org/10.1590/s2175-97902019000200261.

Yanat, M., & Schroën, K. (2021). Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. Reactive and Functional Polymers, 161, 104849. https://doi.org/10.1016/j.reactfunctpolym.2021.104849.

Zielińska, A., Carreiró, F., Oliveira, A. M., Neves, A., Pires, B., Venkatesh, D. N., Durazzo, A., Lucarini, M., Eder, P., Silva, A. M., Santini, A., & Souto, E. B. (2020). Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. Molecules, 25(16), 3731. https://doi.org/10.3390/molecules25163731.

Downloads

Published

2024-07-31